PRINCIPIOS DE SELLOS MECANICOS ROTATIVOS
SELLOS MECANICOS ROTATIVOS LUBRICADOS CON LIQUIDO Y SELLOS MECANICOS
LUBRICADOS CON GAS
Como se mencionó, un sello mecánico consiste esencialmente
de una restricción axial donde se reduce la presión del fluido a ser sellado
(generalmente hasta la presión atmosférica) a través de la separación de
sellado.
Se distingue entre sellos mecánicos lubricados con líquido y
sellos mecánicos lubricados con gas de
acuerdo al estado físico del fluido a ser sellado.
La separación de sellado se establece entre dos superficies
anulares de rozamiento, las cuales están alrededor y perpendiculares al rotor
las cuales están completamente juntas o bien ligeramente separadas una de otra
por la película del fluido líquido o gaseoso a sellar.
ESTRUCTURA BASICA Y FORMA DE OPERACION
Componentes.
La figura 5 muestra un sello mecánico rotativo sencillo donde se muestran los elementos más importantes de un sello.
La cara y el asiento son los elementos más importantes ya que en ellos están las superficies de rozamiento.
En la ilustración la cara esta fija al rotor y el asiento está fijo a la carcasa del equipo.
Elementos de empuje.
Las caras de rozamiento deben ser empujadas una contra otra en dirección axial. En este ejemplo, la fuerza necesaria es generada por un resorte sencillo tipo cónico.
Otras formas son: un resorte sencillo ondulado o bien varios resortes distribuidos alrededor de una circunferencia (Fig. 6).
Elementos de sellado secundario.
Las uniones entre la cara y el asiento con los elementos de la máquina donde se fijan (rotor o carcasa), deben ser sellados. En el ejemplo mostrado el asiento se fija a la carcasa del equipo y ésta unión se sella mediante un elemento de sellado estático, mientras que la unión entre la cara y el rotor se sella mediante un elemento de sellado dinámico. Este elemento de sellado es “dinámico” porque se mueve axialmente sobre el rotor junto con la cara del sello.
Los elementos de sellado ilustrados son de sección transversal circular, conocidos como “o-rings”.
Adicionalmente a su función de sellado, los elementos de sellado secundario funcionan como elementos de ajuste y centrado. El elemento de sellado de la cara ajusta y centra esta sobre el rotor, mientras que el elemento de sellado del asiento ajusta y centra este en la carcasa del equipo.
Fuerza de cierre y fuerza de apertura.
La cara del sello es empujada contra el asiento mediante la fuerza mecánico de compresión del resorte y por la fuerza hidráulica generada por la presión del fluido a sellar. La suma de estas dos fuerzas se conoce como fuerza de cierre. En condición despresurizada la fuerza del resorte mantiene en contacto las superficies de rozamiento una contra otra. En operación dinámica, el fluido penetra entra las superficies de rozamiento y establece una separación de sellado. La presión del fluido es reducida en la superficie de rozamiento.
La presión en la separación de sellado genera una fuerza de apertura que contra actúa con la fuerza de cierre.
Momento de torsión.
El rozamiento entre las superficies de sellado causa un momento de torsión, parcialmente debido al rozamiento entre las superficies y la película del fluido y parcialmente debido al rozamiento directo entre las superficies. Este momento tiene que ser transmitido al rotor y a la carcasa del equipo.
En el ejemplo de la figura 5 el momento de torsión es transmitido del rotor al resorte cónico mediante la interferencia que se logra entre el diámetro interior del resorte y el rotor, luego el resorte transmite el momento a la cara del sello a través de una ranura.
En el asiento, el elemento de sellado secundario proporciona una fuerza de apriete entre en asiento y la carcasa del equipo, evitando que el asiento gire debido al rozamiento y por lo tanto el momento de torsión con la cara.
Sentido de rotación.
Debe atenderse el sentido de enrollamiento del resorte tal que el sentido de rotación lo mantenga con interferencia con el rotor.
Materiales.
Los sellos mecánicos son fabricados de materiales especiales tales que sean resistentes a la abrasión, temperatura, presión y ataques químicos.
Materiales para las caras.
Los materiales de las caras deben cumplir con las siguientes características:
o Bajo coeficiente de rozamiento,
o Suficiente dureza para soportar la abrasión y tener un mínimo desgaste,
o Alta conductividad térmica para eliminar el calor generado por el rozamiento,
o Bajo coeficiente de expansión térmica para reducir los esfuerzos mecánicos,
o Alto módulo de elasticidad para reducir las deformaciones.
Los materiales comúnmente empleados para fabricar las caras de los sellos mecánicos son:
- carbones artificiales
- metales
- carburos
- óxidos metálicos
Carbones artificiales.
Los carbones artificiales son materiales cerámicos no óxidos, suaves con variantes de acuerdo a tipo, composición y tamaño de grano y que difieren del material base - una mezcla de carbón amorfo y grafito cristalino - y el aglomerante empleado. Las porosidades son llenadas con impregnación (por ejemplo metales como el antimonio o resinas sintéticas).
Metales.
Los metales no son muy comunes para la fabricación de las caras de los sellos mecánicos, sin embargo son una alternativa en condiciones de operación no agresivas. La fundición de acero al Cromo Molibdeno es un material empleado.
Carburos.
Un material muy común empleado para las caras de los sellos es el carburo de tungsteno (TC). Este material sinterizado consiste de 90 a 95% de cristales de carburo de tungsteno, los cuales son aglomerados por una matriz de cobalto o bien de níquel. El tipo y contenido del aglomerante influye directamente en la resistencia química y dureza.
El carburo de tungsteno también tiene una buena conductividad térmica, sin embargo no es adecuado para rozamiento sin lubricación.
Carburo de Silicio.
El empleo de carburo de silicio para fabricar las caras de los sellos mecánicos ha aumentado. El proceso más adecuado es mediante sinterizado directo a temperaturas 2200°C y es casi tan duro como el diamante. Otro tipo de carburo de silicio es el aglomerado por reacción (SiC-Si) en el cual 10% aproximadamente de cristales de silicio quedan libres.
El carburo de silicio por sinterizado directo es químicamente resistente a cualquier tipo de fluido en la escala completa de pH, pero es más frágil que el aglomerado por reacción, este último es atacado químicamente por fluidos alcalinos con un pH de más de 10, debido al silicio libre.
Cerámica Óxido de Aluminio.
El material cerámico más conocido y empleado es el óxido de aluminio (Al2O3) que es resistente al desgaste y al ataque químico y no requiere ninguna impregnación. Sus desventajas son su fragilidad y baja conductividad térmica.
Combinación de materiales de las caras
Las combinaciones de los materiales de las caras pueden ser dividida en dos clasificaciones: Dura - Suave y Dura - Dura.
Los materiales suaves son todos los carbones artificiales, mientras que los materiales duros son los carburos y los óxidos metálicos.
La combinación de materiales Suave - Suave no es recomendable.
La combinación Dura - Suave es la más recomendable y por lo tanto la más usado debido al bajo coeficiente de rozamiento que le permite operar sin lubricación en condiciones de emergencia.
Los carbones artificiales no son muy resistentes a la abrasión por lo que la combinación Dura - Dura es necesaria cuando el fluido a sellar contiene sólidos. Sin embargo esta combinación presenta un fuerte desgaste en operación sin lubricación, por lo que debe asegurarse una adecuada lubricación y enfriamiento.
Materiales para los elementos de sellado secundario.
Elastómeros.
Existe una amplia gama de materiales elastómeros que pueden emplearse para fabricar los elementos de sellado secundario. La forma más común de los elementos de sellado secundario es de sección transversal circular (o-rings) aunque pueden diseñarse otras formas o bien fuelles.
Los elastómeros más comúnmente empleados son:
- monómero de etileno propileno dieno (EPDM)
- nitrilo (NBR, por ejemplo Perbunan®)
- fluorocarbon (FPM, por ejemplo Viton®)
- perfluorocarbon (FFKM, por ejemplo Kalrez®)
No elastómeros
- poli tetra-fluoro etileno (PTFE, por ejemplo Teflon®) de excelente resistencia química.
- grafito puro (por ejemplo Statotherm®) de excelente resistencia térmica.
Materiales para los componentes de arrastre y ensamble.
Criterio de selección.
Los elementos de arrastre y ensamble tales como collares, tornillos y carcasas deben fabricarse de materiales resistentes al ataque químico y adecuados para la temperatura, presión y esfuerzos mecánicos a los que será sometido.
Los aceros inoxidables al cromo, al cromo-níquel, al cromo-níquel-molibdeno en diferentes aleaciones son los recomendables y comúnmente empleados para la fabricación de los elementos de arrastre y ensamble de los sellos mecánicos.
Las propiedades de conductividad térmica, expansión térmica y resistencia mecánica deben ser analizados para cada aplicación.
Cálculo y Diseño.
Las siguientes ecuaciones y ejemplos numéricos aplican solo a los sellos lubricados con líquido. Las condiciones dinámicas en los sellos lubricados con gas son más complicadas.
Fuga.
Para lubricar y enfriar las superficies de rozamiento se requiere que fluya líquido entre estas, lo cual resulta en una fuga normal que puede estimarse mediante una ecuación. Es posible que la fuga del fluido no sea percibida visualmente, esto significa que el calor generado por el rozamiento de las caras ha calentado el fluido hasta evaporarlo.
Factores que determinan la cantidad de fuga
Los factores más importantes que influyen en la cantidad de fuga son:
- condición de las caras del sello
- rugosidad, paralelismo y perpendicularidad de las superficies de rozamiento
- condiciones del equipo (por ejemplo vibraciones)
- forma de operación del equipo (por ejemplo: continua o intermitente)
- características físicas y químicas del fluido a sellar
- diseño del sello
- cuidados durante el ensamble, la instalación y puesta en operación
Fuga teórica.
La fuga teórica a través de la separación de sellado entre las superficies de rozamiento de un sello mecánico lubricado con líquido puede ser determinada con la siguiente ecuación:
Q = π x rm x h3 x ∆p / (6 η x b)
Donde:
Q = volumen de fuga
rm = radio medio de las superficies de rozamiento
h = distancia media de separación entre las superficies de rozamiento = espesor de la película de lubricación
∆p = presión diferencial entre el diámetro exterior y el diámetro interior de las superficies de sellado
η= viscosidad dinámica del fluido a sellar
b = ancho radial de la separación de sellado
Importancia de la separación de sellado.
La cantidad de fuga es directamente proporcional a la forma de la cara del sello (radio medio, ancho de la superficie de rozamiento), la presión y la viscosidad del fluido a sellar a una potencia de tres con la separación de sellado, tal que por ejemplo aumentando la separación de sellado en dos, la cantidad de fuga incrementará en ocho si las otras condiciones permanecen constantes. Esto ilustra la importancia de la separación de sellado así como las demás variables. La separación de sellado depende de la rugosidad de cada una de las superficies de rozamiento, así como del paralelismo y perpendicularidad. Es obvio, por lo tanto la importancia de la calidad de la producción y la estabilidad del material en operación para minimizar la cantidad de fuga.
Consumo de potencia.
Operación normal.
Los sellos mecánicos consumen potencia en forma de calor.
En la mayoría de los casos, por ejemplo a una presión de 10 bar, velocidades entre 1500 y 300 rpm y diámetros de rotores entre 40 y 60 mm, el rozamiento de las caras del sello puede consumir cientos de Watts. El calor resultante debe ser disipado del sello por el fluido ya sea mediante el flujo de este a través de la superficies de rozamiento o bien por convección mediante la transferencia de calor a través de los componentes del sello hacia los componentes de la máquina.
Condiciones severas.
En condiciones severas (altas presiones y velocidades o bajos puntos de ebullición), debe asegurarse la disipación del calor en forma rápida y suficiente para evitar que el fluido se evapore en las superficies de rozamiento y provoque la operación en seco que resultaría en la falla prematura del sello.
Aplicaciones en alta velocidad.
Para aplicaciones en alta velocidad (> 30 m/s, velocidad periférica en el diámetro medio de las superficies de rozamiento), debe analizarse el calentamiento del fluido por la turbulencia y rozamiento con las superficies del sello mecánico y sumado al calor generado por el rozamiento de las caras.
El rozamiento promedio en la separación de sellado en un sello mecánico lubricado con líquido se calcula con la siguiente ecuación:
PR = pg x A x f x vg
donde:
PR = rozamiento promedio
pg = presión en las superficie de rozamiento (suma de la fuerza del resorte y de la fuerza hidráulica)
A = superficie de rozamiento
f = coeficiente de rozamiento
vg = velocidad periférica
Otros factores que influyen y que no son conocidos cuantitativamente en forma precisa, tales como el rozamiento del fluido y el contacto directo parcial de las superficies de sellado (en una condición de “rozamiento semi-líquido”), son tomadas en cuenta en el coeficiente de rozamiento, el cual es un valor empírico.
Operación sin recirculación.
Cuando un sello mecánico no puede ser aplicado en cajas sin recirculación (“Dead-End”) (sin enfriamiento o lubricación adicional), se debe proporcionar un enfriamiento interno o externo ya sea mediante la inyección continua de fluido de lubricación y enfriamiento a la cámara del sello desde una fuente externa o desde un punto del equipo a mayor presión que la que actúa en la caja del sello.
En las normas API610 y API682 se recomiendan varios sistemas de lubricación y enfriamiento para sellos mecánicos en bombas rotatorias.
TIPOS DE SELLOS MECANICOS LUBRICADOS CON LIQUIDO
Sellos mecánicos No balanceados y sellos mecánicos balanceados.
Las caras del sello mecánico son empujadas una contra otra por la combinación de las fuerzas del resorte o resortes y la fuerza hidráulica generada por la presión del fluido a ser sellado. La suma de estas fuerzas se conoce como fuerza de cierre (fuerza de los resortes FF+ fuerza hidráulica FH), que se calcula como el producto de la presión diferencial Dp y la acción hidráulica de la superficie de sellado AH. Si la presión diferencial incrementa, la fuerza de los resortes es menos significativa comparada con la fuerza hidráulica.
La fuerza de cierre es contra actuada por la fuerza de apertura generada en la película de líquido que se forma entre las superficies de sellado y por la fuerza de contacto entre estas. La fuerza de apertura en la separación de sellado se calcula mediante la integral de la curva de la presión en la separación de sellado (psp).
Fuerzas axiales en la separación de sellado.
En la siguiente figura se muestran tres perfiles simplificados e idealizados de presión (actuando desde el diámetro externo al interno del sello).
Factor de empuje.
En presiones de 20 bar y mayores, la fuerza hidráulica es tan grande que la película de lubricación no puede establecerse entre las superficies de sellado, lo que resulta en que estas estén en contacto sin lubricación y por lo tanto operen con demasiado desgaste.
Esto se soluciona reduciendo el área sobre la cual actúe la presión con respecto al área de contacto.
El factor de empuje (k) de un sello mecánico se define como la relación entre el área hidráulica AH y el área de contacto A:
Cantidad de fuga de un sello balanceado.
En el rango de presiones bajas y medianas, los sellos mecánicos no balanceados (k >= 1) son empleados con un factor de empuje aproximadamente de 1, por ejemplo: el área activa de presión es ligeramente mayor o igual que la superficie de contacto (Fig. 9a).
A mayores presiones o velocidades, es importante asegurar que se establezca una adecuada película de lubricación. Esto se logra con un sello mecánico balanceado (k < 1) con valores de empuje entre0.8 y 0.6 (fig. 9b). El área activa de presión es entonces 20 a 40% menor que la superficie de sellado y, la fuerza de cierre que actúa en estas se reduce en el mismo rango. Esto incrementa la cantidad de fuga de fluido a través de las caras.
El desempeño de cada sello mecánico depende de:
- rozamiento ideal del líquido en la separación de sellado. Por ejemplo en un sello mecánico balanceado se tiene la ventaja de bajo consumo de potencia y mínimo desgaste, aunque la cantidad de fuga es mayor que la de un sello no balanceado.
- rozamiento semilíquido, esto es: que la película de lubricación se establece solo en forma parcial en la superficie de sellado, lo que resulta en un mayor desgaste y menor tiempo de vida del sello. Esto es común en sellos no balanceados operando en presiones iguales o mayores a 20 bar o altas velocidades.
Si el sello es balanceado con un valor de empuje (k) igual o menor a 0.5, la fuerza de apertura puede ser tan grande que la separación de sellado se incremente demasiado y la cantidad de fuga sea incontrolable.
Sellos de empuje y sellos de fuelle.
Elemento de sellado secundario dinámico
Uno de los más comunes tipos de sellos es el conocido como sello de empuje, donde el elemento de sellado secundario se mueve axialmente junto con la cara del sello.
Otro grupo de sellos es aquel donde el desplazamiento axial de la cara es soportado por un fuelle, mientras que la parte que hace el sellado secundario permanece estática. Este tipo de sellos es adecuado en servicios con contenido de sólidos.
La figura 10 muestra un sello mecánico de fuelle de elastómero rotativo con un resorte sencillo colocado en su diámetro exterior.
Sellos de fuelle metálico.
La figura 11 muestra dos sellos mecánicos de fuelle metálico rotatorio. El fuelle metálico actúa como un resorte.
Los tipos de sellos de fuelle metálico son aplicados en servicios donde los sellos de fuelle de elastómero no son recomendables, tales como temperaturas extremas.
Sellos mecánicos rotativo y sellos mecánicos estacionarios.
Los sellos mecánicos también se clasifican como sellos rotativos y sellos estacionarios. En los primeros la unidad de empuje está fija al rotor y gira junto con este, en los segundos, la unidad de empuje se fija a la carcasa del equipo.
En la figura 12 se ilustra un sello mecánico estacionario para altas velocidades periféricas.
Los sellos mecánicos rotativos son aplicados en velocidades periféricas menores a 25 m/s.
Sellos mecánicos presurizados en su diámetro exterior y sellos mecánicos presurizados en su diámetro interior.
Esta clasificación se refiere al arreglo del sello mecánico con respecto al lado donde actúa la presión del fluido.
Para sellos mecánicos presurizados por su diámetro exterior, la presión del fluido a ser sellado actúa desde el diámetro exterior de las caras. La fuga se mueve radialmente del diámetro exterior al interior de las cara. Los ejemplos anteriores, así como la mayoría de las aplicaciones son sellos de este tipo. La ventaja de este arreglo es que la presión del fluido así como la presión de apertura generada por la película lubricante contra actúan una contra otra minimizando la cantidad de fuga.
Fluido buffer contra los sólidos.
En los sellos mecánicos presurizados en su diámetro interior, tanto la presión del fluido de proceso como la del fluido auxiliar (buffer) actúan desde el diámetro interior de las caras del sello. La fuga fluye radialmente desde el diámetro interior hacia el diámetro exterior de las caras, siendo por lo tanto mayor que en los sellos presurizados desde su diámetro exterior.
Cuando existe presencia de sólidos en el fluido de proceso, debe emplearse un sistema de fluido auxiliar buffer a mayor presión que la del fluido a sellar, esto evitará que los sólidos pases entre las superficies de sellado y las dañen.
SELLOS MECANICOS SENCILLOS Y SELLOS MULTIPLES
Los sellos mecánicos descritos anteriormente son sellos sencillos, en los cuales el fluido a sellar penetra entre la separación de sellado, lubricando las superficies de sellado, evitando su contacto. Lo que significa que los sellos sencillos solo pueden operar con fluidos con características lubricantes y que fluyan fácilmente.
Fluidos no adecuados para los sellos sencillos
Los sellos sencillos no pueden ser aplicados para sellar fluidos con las siguientes características:
- alta viscosidad
- contenido de sólidos
- peligrosos o explosivos
- químicamente agresivos
- de presión de vapor cercana a la de operación
Sello mecánico en arreglo doble.
Los fluidos con las características descritas anteriormente son sellados con sellos mecánicos en arreglo doble, los cuales operan con un sistema de fluido buffer a mayor presión (2 o 3 bar) que la del producto, evitando que este dañe los componentes del sello. La fuga normal es de fluido buffer hacia el lado producto y hacia la atmósfera, por lo que debe emplearse un fluido limpio, con propiedades lubricantes, compatible con el fluido de proceso y no peligroso para el ambiente.
La figura anterior ilustra un sello mecánico en arreglo doble con un sistema buffer, el cual esencialmente consiste de un recipiente termosifón para un fluido presurizado. El recipiente debe contener suficiente cantidad de fluido buffer para soportar la fuga normal del sello durante un tiempo adecuado. La presurización del sistema se efectúa inyectando un gas inerte (por ejemplo N2). La remoción del calor se logra con el serpentín de enfriamiento localizado en el interior del recipiente y por el cual se circula agua.
Existen otros diseños de sistemas de lubricación y enfriamiento que se emplean para la operación de sellos dobles, por ejemplo un sistema de presurización con bomba de recirculación integrada en el circuito buffer.
Definitivamente para un sello doble se requiere un sistema de lubricación y enfriamiento más sofisticado que para un sello sencillo.
Arreglo tándem.
El arreglo tándem se define como dos sellos colocados en la misma orientación (fig. 14). El sello interno (lado producto) opera a la presión del fluido de proceso, mientras que el sello externo (lado atmosférico) opera a presión atmosférica. La fuga normal del sello interno se colecta en el sistema termosifón de lubricación del sello externo.
Los sellos en arreglo tándem se aplican cuando: la fuga del fluido de proceso puede ser enviada a un sistema de venteo aprobado.
La presión del fluido de proceso es muy grande tal que debe abatirse en dos o tres fases de sellado la presión del fluido de proceso es negativa (vacío). Entonces el sistema de lubricación del sello externo también proporcionará la lubricación y enfriamiento necesarios a las caras del sello interno.
Sellos mecánicos en cartucho.
El término sello en cartucho es empleado para describir los sellos que forman una unidad completamente ensamblada lista para ser instalada en el equipo (fig. 15).
Las ventajas de un sello en cartucho son:
- fácil y rápida instalación
- pueden ser probados en fábrica
- los componentes delicados (caras y empaques) son protegidos contra daños durante transporte y almacenamiento.
Durante la transportación e instalación, los elementos de fijación (espaciadores) mantienen sin movimiento relativo los conjuntos dinámico y estático del cartucho. Estos espaciadores deben ser removidos del cartucho o girados 180° una vez que el cartucho se fijo adecuadamente a la carcasa y al rotor del equipo y antes de iniciar su operación.
Sellos mecánicos lubricados con gas.
Los sellos mecánicos lubricados con gas (sellos de gas) son una moderna tecnología de sellado que pueden aplicarse en arreglo sencillo para el sellado de gases o bien en arreglo doble para sellado de líquidos en equipos rotatorios.
Esta tecnología brinda ventajas económicas de operación y mantenimiento debido a su bajo nivel de fuga de gas de sellos, operación sin desgaste de sus caras y bajo consumo de potencia.
Los sellos de gas en arreglo sencillo son aplicados en sopladores, ventiladores y turbinas de vapor, reemplazando a los sistemas de sellado de poca eficiencia tales como laberintos, anillos de restricción e incluso sellos mecánicos lubricados con líquido, por ejemplo sellos lubricados con aceite de compresores rotatorios.
Los sellos mecánicos de gas pueden aplicarse en bombas, e incluso en agitadores y reactores.
Principio de operación.
La estructura de un sello mecánico de gas es similar a la de un sello lubricado con líquido, con la diferencia de que en el sello mecánico de gas las caras operan sin contacto entre sí debido a una película de gas.
Una de las caras tiene ranuras aerodinámicas que operan como álabes succionando el gas de sellos, incrementando su presión y estableciendo una película de este gas entre las dos caras del sello, evitando que estas hagan contacto y por lo tanto operan sin desgaste.
La separación es de apenas algunos micrones, lo que resulta en una mínima fuga de gas de sellos y por lo tanto un mínimo costo de operación.
Los sellos en arreglo sencillo que operan con presión por su diámetro externo son aplicados para sellar gases limpios, mientras que en arreglo doble son recomendados para el sellado de líquidos que no contengan sólidos, para los cuales se aplican sellos presurizados por su diámetro interior.
Materiales.
Los límites de operación de presión, temperatura y velocidad son determinados, además de por el diseño, por los materiales de los elementos de sellado secundario y de las caras del sello. La combinación de caras dura - suave (SiC - carbón grafito) es adecuada para bajas presiones. Esta combinación permite que las caras hagan contacto durante los periodos de paro y arranque con un mínimo desgaste. En aplicaciones de altas presiones, solo pueden emplearse ambas caras en materiales duros (SiC-SiC) para evitar las deformaciones de los elementos. Sin embargo esta combinación tiene un coeficiente de rozamiento muy grande por lo que debe buscarse la forma de reducirlo para poder usarlos. Un recubrimiento de Carbón tipo diamante (DLC = diamond like carbon) en una de las caras, permite que estas hagan contacto sin desgaste durante los paros y arranques del sello. Con estos materiales (SiC de alto módulo de elasticidad y excelente conductividad térmica, así como resistencia química) y el recubrimiento de carbón tipo diamante (de mínimo coeficiente de rozamiento) se obtienen sellos capaces de operar en severas condiciones.
______________________________________________________________________________________
ENTRADAS RELACIONADAS
______________________________________________________________________________________
FUENTES:
Principios de los sellos mecánicos.
http://www.novatec.cr/Utilitarios/Burgmann_Sellos%20mecanicos/Principios_Sellos-mecanicos.pdf