miércoles, 14 de febrero de 2024

UREA PARA CAMIONES

Funcionamiento de los motores Diesel

Los motores Diesel no encienden la mezcla de aire y combustible mediante una chispa. La mezcla se comprime hasta que el aire se calienta y causa que el combustible explote. Este proceso produce más calor y presión que los valores típicos en los motores a gasolina.

Emisiones de los motores Diesel
El aire está compuesto de alrededor de un 78% de nitrógeno. Bajo las condiciones extremas de calor y temperatura halladas dentro de los motores Diesel, el nitrógeno se combina con oxígeno para formar peligrosos óxidos de nitrógeno (NO y NO2, conocidos colectivamente como NOx). Las emisiones de NOx contribuyen a formar smog, reducir el contenido de oxígeno del agua, y también juegan un importante rol en la formación de lluvia ácida.

Inyección de urea
La urea es un compuesto orgánico comúnmente hallado en la orina de los mamíferos. El compuesto controla el nivel de nitrógeno en la sangre uniéndose con la molécula de NOx y volviéndola inofensiva. Este compuesto produce el mismo efecto cuando es inyectado en el flujo de escape rico en NOx de un motor Diesel, reduciendo las emisiones peligrosas hasta en un 80% (en el caso del sistema Mercedes BlueTec).

La urea para camiones es una solución nitrogenada que se utiliza para reducir las emisiones de óxido de nitrógeno (NOx) en los motores diésel y cumplir con los estándares ambientales. La urea se inyecta en el flujo de escape del motor diésel, donde se convierte en amoníaco y reacciona con los gases de escape para convertir el NOx en nitrógeno y vapor de agua. El sistema SCR (reducción catalítica selectiva) basado en urea es la única tecnología disponible que puede eliminar suficiente NOx del escape de diésel para cumplir con los estrictos límites impuestos por la Agencia de Protección Ambiental (EPA) de los Estados Unidos.

Ha habido cierta confusión en la industria automotriz sobre qué es exactamente la urea y cómo se utiliza en el fluido de escape diésel (DEF) y AdBlue. Dado que aparece en una variedad de productos cotidianos que usamos, sin mencionar que nuestros cuerpos lo produce naturalmente, no es de extrañar que haya habido malentendidos en el mercado.

La urea de grado comercial, que se compone de amoníaco sintético y dióxido de carbono cuando se somete a altas temperaturas, se puede producir en forma líquida o sólida y se usa en fertilizantes y el DEF. Para fines de DEF, se produce generalmente en forma de grano y se transporta en súper sacos o vagones a granel.


¿Qué diferencia hay entre el DEF y el AdBlue?
¡Ambos son urea automotriz! La única diferencia es que en Estados Unidos se le denomina fluido de escape diesel (DEF), mientras que en Europa se le conoce como AdBlue (nombre registrado). Los dos se encargan de reducir el NOx hasta en un 90%, incluso pueden disminuirlo a niveles cercanos a cero cuando se usan en combinación con la tecnología de filtro de partículas diésel.


El DEF y AdBlue son un fluido acuoso de urea 32 (AUS 32), una solución clara de nitrógeno al 32.5% de urea de alta pureza en agua desmineralizada. Las soluciones de urea son seguras de manejar, afirman los fabricantes.

El nitrógeno es el componente principal del aire que respiramos y es inofensivo para el medio ambiente, al igual que el agua. Adicionalmente, la mayoría de los motores diésel modernos usan SCR en combinación con la recirculación de gases de escape para reducir las emisiones.

¿Qué significa SCR?


En primer lugar, la reducción selectiva de catalizadores (SCR) no es una tecnología nueva, a pesar de que la EPA solo lo haya ordenado en la última década. Ha existido durante casi medio siglo y se utilizó por primera vez en la industria de generación de energía para reducir los óxidos de nitrógeno de las centrales eléctricas de carbón.

El sistema SCR basado en urea es la única tecnología disponible que puede eliminar suficiente NOx del escape de diésel para cumplir con los estrictos límites impuestos por la Agencia de Protección Ambiental (EPA) de los Estados Unidos.


¿Cómo funciona una SCR?


El gas de escape caliente y el DEF (o AdBlue) ingresan al convertidor catalítico donde la urea de estos fluidos y el gas de escape reaccionan con una variedad de compuestos metálicos para convertir el dióxido de nitrógeno y el monóxido en nitrógeno y agua.

¿Con cuanta frecuencia debería llenar el tanque de Adblue o DEF?
Quítate la idea de que tener un sistema SCR junto con un tanque adicional para la urea no es para nada económico. No tendrás que llenar dicho tanque todo el tiempo. Solo deberás hacerlo cada vez que cambies el aceite o dependiendo de tus hábitos de manejo o la duración de tus viajes.

¿Qué es la urea?
La urea es un compuesto químico formado por nitrógeno y carbono que se encuentra de forma natural en el organismo de los mamíferos. También se puede producir de forma sintética a partir de amoníaco y dióxido de carbono. La urea que se utiliza en los camiones se conoce como AdBlue o ARLA 32 y se trata de una solución acuosa al 32,5% de urea de alta pureza.

¿Cómo funciona la urea en los camiones?
La urea se almacena en un depósito independiente del combustible y se inyecta en el sistema de escape del camión mediante un dosificador. Al entrar en contacto con el catalizador SCR, la urea se descompone en amoníaco y dióxido de carbono.

El amoníaco reacciona con los óxidos de nitrógeno y los transforma en nitrógeno y agua, que son gases inocuos para el medio ambiente. De esta forma, se logra reducir hasta en un 90% las emisiones de NOx.

¿Por qué es importante la urea en los camiones?
La urea en los camiones y su funcionamiento es importante por varias razones:
✓ Contribuye a cumplir con las normas ambientales vigentes, como la Euro 6, que establecen límites cada vez más estrictos para las emisiones de NOx.
✓ Mejora el rendimiento del motor, ya que permite optimizar la combustión y reducir el consumo de combustible.
✓ Protege el sistema de escape, evitando la formación de depósitos y obstrucciones que puedan afectar al funcionamiento del catalizador SCR.


¿Cómo cuidar la urea en los camiones?
Para garantizar el correcto funcionamiento de la urea en los camiones, es necesario seguir algunas recomendaciones:
✓ Revisar periódicamente el nivel de urea y rellenar el depósito cuando sea necesario. El camión cuenta con un indicador luminoso que avisa cuando el nivel está bajo.
✓ Utilizar solo urea homologada y certificada, como la que ofrece Cummins de los Andes, que cumple con las especificaciones técnicas requeridas.
✓ Almacenar la urea en un lugar fresco, seco y protegido de la luz solar directa, ya que puede deteriorarse con el calor o la exposición a los rayos UV.
✓ No mezclar la urea con otros líquidos ni contaminarla con impurezas, porque puede dañar el sistema SCR o provocar averías.
✓ No vaciar el depósito de urea ni desconectar el dosificador, puesto que puede generar una alerta en el tablero y limitar la potencia del motor.

La urea es un elemento clave para el funcionamiento de los camiones que utilizan tecnología SCR, ya que permite reducir las emisiones contaminantes y mejorar el rendimiento del motor.

Recomendamos seguir estas pautas para un uso adecuado y el cuidado de la urea en los camiones equipados con sistemas SCR:
✓ Primero, es fundamental utilizar urea de calidad y asegurarse de que el Diesel Exhaust Fluid (DEF) se almacene en un ambiente fresco y seco, protegido de la luz solar directa.
✓ Se debe evitar la mezcla de DEF con otros productos químicos, ya que esto puede afectar su integridad. Es esencial contar con un tanque de urea adecuado y mantenerlo limpio para evitar la obstrucción de los inyectores.
✓ Es importante realizar un seguimiento regular del nivel de urea y recargarlo antes de que se agote por completo, para garantizar un funcionamiento óptimo del sistema SCR.

Siguiendo estas recomendaciones se puede garantizar una correcta utilización de la urea y maximizar los beneficios en términos de rendimiento y reducción de emisiones en los camiones.




FUENTES:

https://www.fuso.com.pe/blog/que-es-urea-para-camiones/

https://cummins.cumandes.com/potencia/importancia-de-la-urea-en-los-camiones-y-como-funciona/

https://alianzaflotillera.com/urea-su-importancia-en-el-autotransporte/

https://www.puromotores.com/13180680/como-se-utiliza-la-urea-en-los-motores-diesel#google_vignette




miércoles, 27 de septiembre de 2023

EFA UNIDAD 3: Sensores y Dispositivos de control.Parte 2

 EFA UNIDAD 3: Sensores y Dispositivos de control.Parte 2

CONTROLES SECUNDARIOS DE OPERACION
  • Dispositivo de control de líquido refrigerante
  • Contactoras
  • Válvula de agua
  • Válvula solenoide
  • Válvula de cuatro vías
  • Válvula de presión de succión
  • Válvula de retención
Los más familiares de todos los controles secundarios de operación son los dispositivos de control de líquido refrigerante Los seis dispositivos de control usados son:
  • Válvula de expansión manual
  • Flotador de lado de baja
  • Flotador de lado de alta
  • Válvula de expansión termostática
  • Válvula de expansión automática
  • Tubo capilar
  • Éstos controles fueron estudiados detenidamente en EFA UNIDAD 1: Ciclo Frigorífico Teórico Parte 4

CONTACTORES
Un contactor es un dispositivo con capacidad de cortar la corriente eléctrica de un receptor o instalación con la posibilidad de ser accionado a distancia, que tiene dos posiciones de funcionamiento: una estable o de reposo, cuando no recibe acción alguna por parte del circuito de mando, y otra inestable, cuando actúa dicha acción. Este tipo de funcionamiento se llama de "todo o nada"

CONTROLES SECUNDARIOS DE SEGURIDAD
  • Relés eléctricos de sobrecarga
  • Termóstato de seguridad
  • Interruptor de alta presión
  • Válvula de seguridad
  • Tapón fusible
  • Disco de ruptura
  • Interruptor de baja presión
  • Interruptor de seguridad de aceite

RELÉS DE SOBRECARGA TÉRMICOS Y ELECTRÓNICOS

Sirven para la protección de los motores que integran el ciclo contra sobretensión, sobrecargas y fallos de fase. Estos relés trabajan en conjunto con contactoras.


RELÉS DE SOBRECARGA TÉRMICOS
Los relés térmicos tienen por lo general tres tiras bimetálicos. Las resistencias calefactoras por las que circula la corriente del motor, calientan indirectamente estas tiras.

RELÉS DE SOBRECARGA ELECTRÓNICOS
En estos dispositivos, la corriente de cada fase es medida a través de transformadores de intensidad de corriente integrados. Un circuito basado en microprocesador se encarga de medir y transformar esta señal analógica hasta finalmente disparar al relé en caso de sobrecarga del motor.

VÁLVULA SOLENOIDE
Una válvula solenoide es un instrumento que es operado eléctricamente para controlar el flujo de líquidos o gases en configuración completamente abierta o cerrada. La válvula solenoide es el componente que se utiliza más a menudo para controlar el flujo de refrigerante en un ciclo frigorífico. Esta válvula posee una bobina magnética que, cuando tiene corriente, levanta el émbolo de su interior. Estas válvulas pueden ser del tipo normalmente abierto o normalmente cerrado. La normalmente cerrada no abre hasta que recibe corriente, y la de tipo normalmente abierto se halla siempre así, y no cierra hasta que llega corriente a la misma.


Las válvulas solenoide son del tipo de acción instantánea ya que abren o cierran muy rápidamente bajo la acción de la corriente eléctrica que se aplica a la bobina. Este tipo de válvula puede emplearse para controlar corrientes de líquido o de vapor. La acción brusca de este tipo de válvula puede causar golpes de ariete cuando se instala en la línea de líquido, por lo que se debe tener cuidado en su localización dentro del circuito. El golpe de ariete del líquido ocurre cuando el refrigerante liquido en movimiento se cierra o abre bruscamente por la acción de la válvula solenoide, dando lugar a que el líquido se detenga de forma precipitada cuando se cierra, o golpee las tuberías por dentro cuando se abre.

La válvula solenoide es la responsable del cierre o apertura del flujo de fluido. Este tipo de válvula lleva siempre grabada una flecha para indicar la dirección del flujo de refrigerante.
Aparte de colocar la válvula solenoide en la dirección correcta, debe considerarse la posición en que se instala la misma. La mayoría de estas válvulas tiene un pesado émbolo que se alza para abrir la válvula. Cuando no está magnetizado el émbolo, el peso del mismo cierra la válvula en su asiento. Si la válvula se instala con la parte superior de lado o hacia abajo, la válvula permanecerá en la posición magnetizada, cuando realmente no lo está.
La válvula solenoide debe fijarse en la línea de refrigerante a fin de que no se produzcan fugas de refrigerante. Puede fijarse por medio de racores de conexión, de pletinas o bien con racores soldados. Muchas de estas válvulas requieren alguna atención de servicio de vez en cuando.


VÁLVULA SOLENOIDE DE ACCIÓN INDIRECTA
Existe también una válvula solenoide, conocida por válvula accionada por piloto o válvula de acción indirecta. Esta válvula emplea un asiento muy pequeño en una válvula “piloto” para desviar la presión del gas a alta presión que motiva el cambio de posición de la válvula mayor. Este tipo de válvula utiliza la diferencia de presión para causar un gran movimiento mientras la bobina magnética solenoide tiene que efectuar un alza pequeña del asiento.


Las válvulas piloteadas o de acción indirecta se utilizan cuando deben controlarse grandes tuberías de vapor o de líquido; pueden disponer de más de una sola entrada y salida. Algunas se conocen como válvulas de cuatro pasos y otras de tres pasos y tienen funciones especiales. Si la bobina ha sido diseñada para llevar a cabo la función de interruptor en una válvula de capacidad, dicha bobina ha de ser de gran tamaño con una fuerte alimentación de corriente.


VÁLVULA DE INVERSIÓN DE CUATRO VÍAS
La válvula de inversión de 4 vías es un componente para cambiar el ciclo entre los modos de refrigeración y calefacción y se utilizan en aplicaciones reversibles, tales como bombas de calor o unidades de aire acondicionado y enfriadoras reversibles.
La válvula de 4-vías permite la inversión del ciclo de refrigeración, cambiando de modo de refrigeración en verano a modo de calor en invierno. El ciclo de inversión se inicia mediante una pequeña válvula solenoide piloto que controla el movimiento de un deslizador, que cambia el sentido de circulación del refrigerante. Por lo tanto, cambiando la dirección del flujo de refrigerante, el equipo de aire acondicionado puede incorporar las funciones de refrigeración en verano y calefacción en invierno juntos.
La inversión del ciclo se utiliza también para el descongelamiento de la escarcha en los evaporadores, o desescarche.



Introducción del funcionamiento de una válvula 4 vías:
Una bomba de calor es un sistema central que acondiciona el aire con el ciclo que es reversible.En la estación veraniega el gas refrigerante tiene el poder de absorción del calor del interior de la vivienda y lo saca al medio exterior. En cambio en la estación invernal dicho ciclo citado se invierte con lo cual el gas refrigerante tiene la función de la absorción del calor del medio exterior y lo introduce en el interior de la vivienda. El evaporador y el condensador están obligados a la intercambiar funciones o lo que es lo mismo, invierte el flujo del gas refrigerante.
Se comenzó como una solución de desescarche trabajando la inversión de ciclo y mandando al evaporador el gas caliente desde la descarga, con tal fin de descongelar el hielo que se genera por la condensación del agua en el exterior del evaporador.
Actualmente la válvula 4 vías es el componente esencial para que pueda funcionar un equipo de aire acondicionado en función de calor.La técnica se basa en que la bobina electromagnética obra sobre un patín interior siendo un mecanismo con la capacidad de alterar el cambio de dirección del flujo.Con esta acción el evaporador se transforma en el condensador y de forma viceversa el condensador se transforma en el evaporador.

Esta válvula esta compuesta por la válvula principal y una válvula piloto, esta última tiene como función ayudar a desplazar el patín interior para realizar el cambio de ciclo. Por otro lado la válvula principal esta compuesta por cuatro vías que, para entender su funcionamiento fijaremos las posiciones que no varían en el circuito y así la comprensión en el funcionamiento del paso de refrigerante se simplifica.
En primer lugar la descarga del compresor ira siempre sobre la tubería que esta sola y opuesta a las otras tres por tanto esta línea será gas a alta presión.
En segundo lugar la aspiración del compresor será siempre la tubería central que está acompañada del las otras dos tuberías, las tuberías de los extremos serán las que cambien siendo en función del modo de empleo del equipo (frío o calor) será aspiración o descarga.

Funcionamiento en modo frío
Desde el compresor descarga refrigerante hacia la válvula de 4 vías penetrará por la tubería que está sola, y pasará a la tubería lateral izquierda donde entrará en el intercambiador exterior, aquí el refrigerante se licuará, después se expansionará en el elemento de expansión para entrar en el intercambiador interior y evaporarse saldrá hacia la válvula inversor donde se dirigirá a la tubería lateral derecha pasara a través del patín interior a la tubería fijada como aspiración (tubería central), y llegará al compresor.

Funcionamiento en modo calor
La compuerta deslizante a sido desplazada, entonces el refrigerante como en el caso anterior entra en la válvula de 4 vías penetrará por la tubería que está sola, y pasará a la tubería lateral esta vez derecha dirigiéndose entonces al intercambiador interior donde condensará saldrá y posteriormente se expansionará para entrar en el intercambiador exterior y evaporarse, volverá a la válvula de inversión de ciclo y entrará a ella por la tubería de la izquierda pasando a la central y llegando finalmente al compresor.


PROTECTORES TÉRMICOS






DISCOS DE RUPTURA
Un disco de ruptura es un dispositivo de alivio instantáneo de sobrepresiones o depresiones.
Es un mecanismo que fallará si la presión en un recipiente sellado supera un límite superior, permitiendo así que la presión caiga antes de que se pueden producir otros eventos no deseados. Estas válvulas de seguridad se utilizan en muchas aplicaciones y sirven una amplia variedad de necesidades. También son conocidos como discos de ruptura o diafragmas de ráfaga.

Típicamente, una vez que falla el disco de ruptura, no puede ponerse a cero y debe ser reemplazado. Este requisito de diseño se basa en el razonamiento de que para mantener la seguridad de las operaciones, la causa de la condición de sobrepresión debe ser encontrada y solucionada. El equipo involucrado y el equipo que lo rodea y las estructuras también deben ser inspeccionados antes de su reutilización.

Los discos de ruptura, rotura, alivio o venteo son membranas fabricadas en diversos materiales, diseñados para romperse y permitir la evacuación o paso del fluido a una presión/depresión predeterminada. Los discos de ruptura ofrecen las siguientes ventajas frente a otros sistemas de alivio de presión:

  • Bajo coste y prácticamente sin mantenimiento.
  • Respuesta instantánea y sin fallos.
  • Fugacidad prácticamente nula.
  • Apertura completa.
  • Alta fiabilidad

_____________________________________________________________________________

ENTRADAS RELACIONADAS:

____________________________________________________________________________

FUENTES:


Manual Carrier




martes, 27 de junio de 2023

Compresor "Scroll"

Un compresor scroll, también conocido como compresor de espiral, es un tipo de compresor de desplazamiento positivo que comprime internamente aire o gas.

Consta de una parte estatórica y una móvil con figura de espiral, que encajan una dentro de la otra.

La pieza móvil no gira, sino que se mueve circularmente dentro de la pieza estatórica, comprimiendo el refrigerante desde afuera hacia adentro.

¿Cómo funciona un compresor scroll? Un compresor scroll consta de dos elementos en forma de espiral unidos con pernos: una espiral fija y una espiral móvil accionadas por un motor. Las espirales oscilan en un movimiento continuo sin que se produzca el contacto entre los metales, mientras que el aire se comprime en volúmenes cada vez más pequeños en bolsas de aire con forma de media luna. Profundicemos un poco más para entender el mecanismo de la compresión por desplazamiento de los compresores scroll.

La espiral móvil se acciona mediante un cigüeñal de carrera corta y se desplaza excéntricamente alrededor del centro de la espiral fija. El movimiento de la espiral móvil genera una succión que aspira el aire desde la abertura de entrada situada en la parte superior de la carcasa del elemento. El aire o el gas que se captura en las bolsas de aire entre las dos espirales se comprime gradualmente mientras se desplaza hacia el centro de la carcasa, donde están el puerto de salida y una válvula antirretorno. El gas comprimido y presurizado se descarga desde el puerto de salida del centro del conjunto. La válvula antirretorno evita el retorno del gas o del refrigerante.

Ángulo de ataque (AoA)

En dinámica de fluidos, el ángulo de ataque (AOA, α, o) es el ángulo entre una «línea de referencia» de un cuerpo (a menudo la línea de cuerda de un perfil alar) y el vector que representa el movimiento relativo entre el cuerpo y el fluido a través del cual se mueve.



El ángulo de ataque es el ángulo entre la línea de referencia del cuerpo y el flujo que se aproxima. Este artículo se centra en la aplicación más común, el ángulo de ataque de un ala o perfil aerodinámico que se mueve en el aire.

Es un parámetro que influye decisivamente en la capacidad de generar sustentación de un ala o en la capacidad de generar tracción en las palas de una hélice.

Normalmente, al aumentar el ángulo de ataque se incrementa la sustentación hasta un cierto punto en el que ésta disminuye bruscamente, fenómeno que se conoce con el nombre de entrada en pérdida. La dependencia de la sustentación con el ángulo de ataque se puede medir a través de un coeficiente de sustentación cuya variación con el ángulo de ataque α se ilustra en la figura 2. La dependencia teórica para una placa plana viene dada por (α)=2πα.



Debido a la interacción directa entre el ángulo de ataque y la sustentación, el control del mismo es el mando primario de un avión o aerodino de ala fija. En efecto, el aumento de la sustentación genera un aumento de la resistencia aerodinámica, que se opone a la tracción aerodinámica. Es decir se produce una reducción de la velocidad aerodinámica. Esto nos lleva a la conclusión de que la regulación primaria de la velocidad en un avión se efectúa mediante la modificación del ángulo de ataque.

Dado que un ala puede tener torsión, una línea de cuerda de toda el ala puede no ser definible, por lo que simplemente se define una línea de referencia alternativa. A menudo se elige como línea de referencia la línea de cuerda del encastre alar. Otra opción es utilizar una línea horizontal en el fuselaje como línea de referencia (y también como eje longitudinal).Algunos autores no utilizan una línea de cuerda arbitraria sino que utilizan la línea de sustentación nula donde, por definición, el ángulo de ataque cero corresponde a un coeficiente de sustentación cero.

Hay que destacar que existen ciertos dispositivos hipersustentadores que pueden incrementar el ángulo de ataque de entrada en pérdida, es decir reducir la velocidad de entrada en pérdida

En dinámica de fluidos, el ángulo de ataque (AOA, α, o) es el ángulo entre una «línea de referencia» de un cuerpo (a menudo la línea de cuerda de un perfil alar) y el vector que representa el movimiento relativo entre el cuerpo y el fluido a través del cual se mueve.

El ángulo de ataque es el ángulo entre la línea de referencia del cuerpo y el flujo que se aproxima. Este artículo se centra en la aplicación más común, el ángulo de ataque de un ala o perfil aerodinámico que se mueve en el aire.

Es un parámetro que influye decisivamente en la capacidad de generar sustentación de un ala o en la capacidad de generar tracción en las palas de una hélice.

Normalmente, al aumentar el ángulo de ataque se incrementa la sustentación hasta un cierto punto en el que ésta disminuye bruscamente, fenómeno que se conoce con el nombre de entrada en pérdida. La dependencia de la sustentación con el ángulo de ataque se puede medir a través de un coeficiente de sustentación cuya variación con el ángulo de ataque α se ilustra en la figura 2. La dependencia teórica para una placa plana viene dada por (α)=2πα.

Debido a la interacción directa entre el ángulo de ataque y la sustentación, el control del mismo es el mando primario de un avión o aerodino de ala fija. En efecto, el aumento de la sustentación genera un aumento de la resistencia aerodinámica, que se opone a la tracción aerodinámica. Es decir se produce una reducción de la velocidad aerodinámica. Esto nos lleva a la conclusión de que la regulación primaria de la velocidad en un avión se efectúa mediante la modificación del ángulo de ataque.

Dado que un ala puede tener torsión, una línea de cuerda de toda el ala puede no ser definible, por lo que simplemente se define una línea de referencia alternativa. A menudo se elige como línea de referencia la línea de cuerda del encastre alar. Otra opción es utilizar una línea horizontal en el fuselaje como línea de referencia (y también como eje longitudinal).Algunos autores no utilizan una línea de cuerda arbitraria sino que utilizan la línea de sustentación nula donde, por definición, el ángulo de ataque cero corresponde a un coeficiente de sustentación cero.

Hay que destacar que existen ciertos dispositivos hipersustentadores que pueden incrementar el ángulo de ataque de entrada en pérdida, es decir reducir la velocidad de entrada en pérdida.


Fuentes:





sábado, 7 de mayo de 2022

Ciclo de Carnot


Ciclo de Carnot

Ir a la búsqueda
El ciclo de Carnot es un ciclo termodinámico que se produce en un equipo o máquina cuando trabaja absorbiendo una cantidad de calor Q1 de una fuente de mayor temperatura y cediendo un calor Q2 a la de menor temperatura produciendo un trabajo sobre el exterior.

El rendimiento de este ciclo viene definido por

y es mayor que el producido por cualquier máquina que funcione cíclicamente entre las mismas fuentes de temperatura. Una máquina térmica que realiza este ciclo se denomina máquina de Carnot.

Como todos los procesos que tienen lugar en el ciclo ideal son reversibles, el ciclo puede invertirse y la máquina absorbería calor de la fuente fría y cedería calor a la fuente caliente, teniendo que suministrar trabajo a la máquina. Si el objetivo de esta máquina es extraer calor de la fuente fría (para mantenerla fría) se denomina máquina frigorífica, y si es ceder calor a la fuente caliente, bomba de calor.

Fue publicado por Sadi Carnot en 1824 en su único libro Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance​ (Reflexiones sobre la potencia motriz del fuego y sobre las máquinas propias a desarrollar esta potencia) y permitió abrir el camino para la formulación de la segunda ley de la termodinámica.


Fuente:
Wikipedia


jueves, 17 de junio de 2021

Manómetros



Los manómetros son una de las herramientas que forman parte de la metrología legal. Estos instrumentos se utilizan para medir la presión de fluídos, líquidos o gaseosos, dentro de una espacio o circuito cerrado. La mayoría de los manómetros que existen en el mercado utilizan la presión atmosférica como referencia para medir la de los gases o fluídos contenidos, dando lugar así a la llamada presión manométrica. Para un correcto uso de estos instrumentos es necesario conocer los diferentes tipos de manómetros y su utilidad dependiendo del contenedor y del contenido que se quiera medir.

👉Diferentes tipos de manómetros

➤Manómetro Bourdon

El manómetro Bourdon se basa en un sensor conocido como tubo Bourdon. Este instrumento tiene un sistema de medida formado por un tubo aplanado que tiende a enderezarse con el aumento de la presión. La forma y el material del tubo dependerá de la presión que se quiera medir, aunque los más comunes son de latón. Los manómetros Bourdon se clasifican según su diámetro, su elemento sensible y el material de fabricación. Las diferencias entre unos y otros están en fin para el que sirve cada uno.


Según el diámetro

El diámetro del manómetro viene a ser el tamaño de la esfera donde se lee la indicación de la presión. Las medidas más habituales que encontramos en la industria son:

• 40 y 50 mm para presiones entre 2.5 y 60 bares. Estos manómetros suelen utilizarse en empresas de neumáticos, contra incendios y reguladores de presión. Aunque sus conexiones suelen ser en latón, es posible realizarlo en otros materiales y para otras presiones.

• La esfera de 63 mm y de 100mm se utiliza en la industria para conexiones de 1/4 y 1/2. Estos manómetros los encontramos en todos los materiales, según su necesidad.

• Los diámetros de 160mm y 250mm se utilizan para presiones elevadas y en laboratorios. El material más común con el que se hacen es el acero inoxidable.

Según el elemento sensible
El elemento sensible de un manómetro es el componente mecánico elástico que experimenta una deformación en proporción a la presión medida. La elección del material del elemento sensible dependerá del rango de presión que se quiere medir:

• Para presiones entre 5 mbar y 600 mbar se usa una cápsula o membrana.
• Un fuelle metálico es utilizado para medir presiones de hasta 7 bar y presiones absolutas.
• Para presiones entre 1 bar y 60 bar se usa un tubo bourdon.
• En el caso de presiones de 160 bar o superiores utilizamos un tubo helicoidal.

Según el material de fabricación
• Los más comunes y más económicos que encontramos tienen el sistema de medida en latón y los demás materiales en ABS o acero.
• Otros son mixtos, donde el sistema de medida es en latón y las cajas protectoras en acero inoxidable. Normalmente suelen utilizarse llenos de glicerina para amortiguar las vibraciones mecánicas.
• Los manómetros inoxidables están hechos con sistemas en inoxidable AISI 316 y con las cajas protectoras en acero inoxidable con o sin glicerina (para manómetros secos).

➤Manómetro de columna líquida
Los manómetros de columna líquida son la opción más sencilla y utilizada para medir presiones y mostrar el nivel de líquidos de un recipiente o tanque. En estos casos se realiza una medida directa de la presión en el punto de unión gracias a la altura o diferencia de nivel a la que se eleva un líquido en un tubo vertical. El tubo vertical (mayormente se utiliza el tubo en U) puede estar abierto y conectado a un aparato que contiene un líquido o cerrado, también llamados manómetros diferenciales.

Todos estos manómetros indican la diferencia entre dos presiones diferentes a la de la atmósfera. Para ello se utiliza un fluido, llamado manométrico, que será el encargado de formar la columna líquida para medir la presión del interior del recipiente. El fluido manométrico puede ser cualquier líquido que no se mezcle con el líquido que está a presión. Para presiones elevadas, grandes diferencias de presión o altos vacíos se utiliza el mercurio como fluido manométrico. Por el contrario, para presiones bajas se usa agua, alcohol u otro líquido con una densidad más baja que la del mercurio.

➤Manómetros de columna líquida diferenciales
Los manómetros diferenciales con tubo en U se dividen en dos modalidades:


• Los de tubo en U diferencial que miden la diferencia de presiones entre dos puntos gracias a la altura del fluido manométrico.

• Los manómetros con tubo en U invertida, donde el líquido que llena el tubo es ligero y se usa para medir la diferencia de presiones en líquidos cuando las columnas abiertas son muy elevadas, o cuando el líquido a presión no puede ponerse en contacto con la atmósfera.

➤Manómetros para presión absoluta
Otro modelo de manómetros de columna líquida son los usados para medir la presión absoluta del fluido a presión. Para ello se toma el espacio de vacío total o perfecto que se queda encima del mercurio y se mide con referencia a una presión nula.
➤Manómetros de columna inclinada
Los manómetros de columna inclinada son usados para medir diferencias de presión muy pequeñas por la amplificación que ofrece este tipo de lectura en comparación con los manómetros de columna de líquido. Estos manómetros con el tubo en U inclinado se utilizan porque la longitud de la altura o la carga pueden multiplicarse por la inclinación de la columna líquida y la escala será así más ancha.

Agroibérica Ingenieros Verificaciones Técnicas - Metrología Legal- Posted on 14 mayo, 2019


FUENTE:

AIVT - Agroibérica Ingenieros Verificaciones Técnicas